Differential neural correlates of reciprocal activation and cocontraction control in dorsal and ventral premotor cortices.
نویسندگان
چکیده
Efficient control of reciprocal activation and cocontraction of the muscles are critical to perform skillful actions with suitable force and impedance. However, it remains unclear how the brain controls force and impedance while recruiting the same set of muscles as actuators. Does control take place at the single muscle level leading to force and impedance, or are there higher-order centers dedicated to controlling force and impedance? We addressed this question using functional MRI during voluntary isometric wrist contractions with online electromyogram feedback. Comparison of the brain activity between the conditions requiring control of either wrist torque or cocontraction demonstrates that blood oxygen level-dependent activity in the caudo-dorsal premotor cortex (PMd) correlates well with torque, whereas the activity in the ventral premotor cortex (PMv) correlates well with the level of cocontraction. This suggests distinct roles of the PMd and PMv in the voluntary control of reciprocal activation and cocontraction of muscles, respectively.
منابع مشابه
When vision guides movement: a functional imaging study of the monkey brain.
Goal-directed reaching requires a precise neural representation of the arm position and the target location. Parietal and frontal cortical areas rely on visual, somatosensory, and motor signals to guide the reaching arm to the desired position in space. To dissociate the regions processing these signals, we applied the quantitative [(14)C]-deoxyglucose method on monkeys reaching either in the l...
متن کاملNeural implementation of response selection in humans as revealed by localized effects of stimulus-response compatibility on brain activation.
Response selection, which involves choosing representations for appropriate motor behaviors given one's current situation, is a fundamental mental process central to a wide variety of human performance, yet the neural mechanisms underlying this mental process remain unclear. Research using nonhuman primates implicates ventral prefrontal and lateral premotor cortices in this process. In contrast...
متن کاملRepresentation of manipulable man-made objects in the dorsal stream.
We used fMRI to examine the neural response in frontal and parietal cortices associated with viewing and naming pictures of different categories of objects. Because tools are commonly associated with specific hand movements, we predicted that pictures of tools, but not other categories of objects, would elicit activity in regions of the brain that store information about motor-based properties....
متن کاملIntermittent visuomotor processing in the human cerebellum, parietal cortex, and premotor cortex.
The cerebellum, parietal cortex, and premotor cortex are integral to visuomotor processing. The parameters of visual information that modulate their role in visuomotor control are less clear. From motor psychophysics, the relation between the frequency of visual feedback and force variability has been identified as nonlinear. Thus we hypothesized that visual feedback frequency will differential...
متن کاملNeural correlates associated with intermanual transfer of sensorimotor adaptation.
Investigations of intermanual transfer of learning have demonstrated that individuals can transfer acquired motor skills from one hand to the other. The purpose of the current study was to use fMRI to investigate the potential overlap of neural regions engaged during learning and at transfer of learning from the dominant arm to the non-dominant arm during sensorimotor adaptation. Participants p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 107 1 شماره
صفحات -
تاریخ انتشار 2012